fst(0, Z) → nil
fst(s(X), cons(Y, Z)) → cons(Y, fst(X, Z))
from(X) → cons(X, from(s(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
len(nil) → 0
len(cons(X, Z)) → s(len(Z))
fst: {1, 2}
0: empty set
nil: empty set
s: empty set
cons: {1}
from: {1}
add: {1, 2}
len: {1}
↳ CSR
↳ CSRInnermostProof
fst(0, Z) → nil
fst(s(X), cons(Y, Z)) → cons(Y, fst(X, Z))
from(X) → cons(X, from(s(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
len(nil) → 0
len(cons(X, Z)) → s(len(Z))
fst: {1, 2}
0: empty set
nil: empty set
s: empty set
cons: {1}
from: {1}
add: {1, 2}
len: {1}
The CSR is orthogonal. By [10] we can switch to innermost.
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
fst(0, Z) → nil
fst(s(X), cons(Y, Z)) → cons(Y, fst(X, Z))
from(X) → cons(X, from(s(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
len(nil) → 0
len(cons(X, Z)) → s(len(Z))
fst: {1, 2}
0: empty set
nil: empty set
s: empty set
cons: {1}
from: {1}
add: {1, 2}
len: {1}
Innermost Strategy.
Using Improved CS-DPs we result in the following initial Q-CSDP problem.
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
fst(X, Z)
from(s(X))
add(X, Y)
len(Z)
fst on positions {1, 2}
add on positions {1, 2}
len on positions {1}
U(fst(x_0, x_1)) → U(x_0)
U(fst(x_0, x_1)) → U(x_1)
U(add(x_0, x_1)) → U(x_0)
U(add(x_0, x_1)) → U(x_1)
U(len(x_0)) → U(x_0)
U(fst(X, Z)) → FST(X, Z)
U(from(s(X))) → FROM(s(X))
U(add(X, Y)) → ADD(X, Y)
U(len(Z)) → LEN(Z)
fst(0, Z) → nil
fst(s(X), cons(Y, Z)) → cons(Y, fst(X, Z))
from(X) → cons(X, from(s(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
len(nil) → 0
len(cons(X, Z)) → s(len(Z))
fst(0, x0)
fst(s(x0), cons(x1, x2))
from(x0)
add(0, x0)
add(s(x0), x1)
len(nil)
len(cons(x0, x1))
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ QCSDP
↳ QCSDPSubtermProof
U(fst(x_0, x_1)) → U(x_0)
U(fst(x_0, x_1)) → U(x_1)
U(add(x_0, x_1)) → U(x_0)
U(add(x_0, x_1)) → U(x_1)
U(len(x_0)) → U(x_0)
fst(0, Z) → nil
fst(s(X), cons(Y, Z)) → cons(Y, fst(X, Z))
from(X) → cons(X, from(s(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
len(nil) → 0
len(cons(X, Z)) → s(len(Z))
fst(0, x0)
fst(s(x0), cons(x1, x2))
from(x0)
add(0, x0)
add(s(x0), x1)
len(nil)
len(cons(x0, x1))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
U(fst(x_0, x_1)) → U(x_0)
U(fst(x_0, x_1)) → U(x_1)
U(add(x_0, x_1)) → U(x_0)
U(add(x_0, x_1)) → U(x_1)
U(len(x_0)) → U(x_0)
↳ CSR
↳ CSRInnermostProof
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ QCSDP
↳ QCSDPSubtermProof
↳ QCSDP
↳ PIsEmptyProof
fst(0, Z) → nil
fst(s(X), cons(Y, Z)) → cons(Y, fst(X, Z))
from(X) → cons(X, from(s(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
len(nil) → 0
len(cons(X, Z)) → s(len(Z))
fst(0, x0)
fst(s(x0), cons(x1, x2))
from(x0)
add(0, x0)
add(s(x0), x1)
len(nil)
len(cons(x0, x1))